Adaptive Monte Carlo variance reduction for Lévy processes with two-time-scale stochastic approximation
نویسنده
چکیده
We propose an approach to a two-fold optimal parameter search for a combined variance reduction technique of the control variates and the important sampling in a suitable pure-jump Lévy process framework. The parameter search procedure is based on the two-time-scale stochastic approximation algorithm with equilibrated control variates component and with quasi-static importance sampling one. We prove the almost sure convergence of the algorithm to a unique optimum. The parameter search algorithm is further embedded in adaptive Monte Carlo simulations in the case of the gamma distribution and process. Numerical examples of the CDO tranche pricing with the Gamma copula model and the intensity Gamma model are provided to illustrate the effectiveness of our method.
منابع مشابه
Adaptive Monte Carlo Variance Reduction with Two-time-scale Stochastic Approximation
Combined control variates and importance sampling variance reduction and its two-fold optimality are investigated. Two-time-scale stochastic approximation algorithm is applied in parameter search for the combination and almost sure convergence of the algorithm to the unique optimum is proved. The parameter search procedure is further incorporated into adaptive Monte Carlo simulation, and its la...
متن کاملRobust Adaptive Importance Sampling for Normal Random Vectors
Adaptive Monte Carlo methods are very efficient techniques designed to tune simulation estimators on-line. In this work, we present an alternative to stochastic approximation to tune the optimal change of measure in the context of importance sampling for normal random vectors. Unlike stochastic approximation, which requires very fine tuning in practice, we propose to use sample average approxim...
متن کاملStabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes
Stochastic models that account for sudden, unforeseeable events play a crucial role in many different fields such as finance, economics, biology, chemistry, physics and so on. That kind of stochastic problems can be modeled by stochastic differential equations driven by jumpdiffusion processes. In addition, there are situations, where a stochastic model is based on stochastic differential equat...
متن کاملOptimal Importance Sampling Parameter Search for Lévy Processes via Stochastic Approximation
The author proposes stochastic approximation methods of finding the optimal measure change by the exponential tilting for Lévy processes in Monte Carlo importance sampling variance reduction. In accordance with the structure of the underlying Lévy measure, either a constrained or unconstrained algorithm of the stochastic approximation is chosen. For both cases, the almost sure convergence to a ...
متن کاملNumerical Algorithms for Pricing Discrete Variance and Volatility Derivatives under Time-changed Lévy Processes
We propose robust numerical algorithms for pricing discrete variance options and volatility swaps under general time-changed Lévy processes. Since analytic pricing formulas of these derivatives are not available, some of the earlier pricing methods use the quadratic variation approximation for the discrete realized variance. While this approximation works quite well for long-maturity options on...
متن کامل